GRID
PROTECTION
ALLIANCE

®

Using the Gateway
Exchange Protocol

Subscribing to Measurements
=N

& openPDC Manager - X X

|
Home Devices Dutputs Gateway Adapters Monitoring Manage 0

Graph Real-tima Measurements

Refresh Interval: 10 sec Last Refresh: 05:36:05.978

1 StatusFlag Reference | Display Settings | Sawe Display Setfings | Load Display Settings

4 DIRECT COMMECTED

Real-time
4 @ SHELBY Edit B0.04—

~ SHELBY-FQ)

SHELBY-DF -0.26
SHELBY-DWVL
[l SHELBY-FQ 359.974 Hz

[C] SHELBY-PA1 -153.69 Degrees

Frequency
s
I

[[] SHELBY-PAZ -159.66 Degrees

[[] SHELBY-PA3 12.245 Degrees

W%wﬂfw'm‘f\r

[[] SHELBY-PA4 -158.604 Degrees 105:36:12,000 05:36:17.133
[- . e

[[] SHELBY-PAS 152133 Degrees D Signal Reference Time Tag Value Unit |

] sHELRY-PM1 792432751 Volts PRAZ SHELBY-FQ 05:36:17.200 59.974 Hz a B

[C] SHELBY-PMZ 298438.875 Volts

[[] SHELBY-PM3 233.086 Amps

© 2013 Grid Protection Alliance. 2

Primary Data Flow

Publication
APls

Subscription
APIls

Primary Data Flow (cont.)

Publication Subscription
APIs APIs

Subscription Publication
APIs APIs

© 2013 Grid Protection Alliance.

Internal/External

Gateway Exchange Protocol (GEP)

 GEP is an extremely simple, small and fast
wire format than can be used to exchange
data points without a fixed predefined
configuration — that is:
— Points arriving in one data packet can be different
than those arriving in another data packet. This
can be due to each point having a different

delivery schedule — or a dynamic schedule (e.g.,
alarms).

 GEP is a signal level publish/subscribe
protocol with two available channels:
— Command Channel (TCP)
— Data Channel (UDP or TCP)

Synchrophasor Data
Protocol Comparisons

IEEE C37.118 IEC 61850

Substation

Deployment Zones Substation Control Center
Control Center
Today Control Center Inter-company
Inter-company
Preconfigured Data Yes — but client
Yes . No
Packet Format definable
Security Options No Yes Yes

Signal Level

Publish / Subscribe No : Yes
dynamic

Yes — but not

© 2013 Grid Protection Alliance. 7

Example Interoperability Layers
| Utilty Layer | ___Example | Challenges ____

Inter-Reliability
Coordinator

Inter-Operating
Center

Control Center

Device /
Substation

© 2013 Grid Protection Alliance.

GEP

GEP
IEEE C37.118

GEP
IEEE C37.118

IEEE C37.118
|IEC 61850

* High Volume at Low Latency
* Dynamic Configuration

e Configuration Management

* System Integration

* Device interoperability
* Device performance

What are the requirements?

« GEP must move a continually variable set of points
at low latency — to be successful, around 1 million

points per second. « 1 million assumes 12
associations and 100

@ @ @ PMUs (in and out)
=~ 0.5 M points in /
é FFFFF Q8 P8 T

[sitcae N @ As of SIEGate 1.0 and

W 7 pn openPDC 2.0, over
/ H *@ 3,350,000 measurements

@ @ per second can be
accommodated.

Moving Measurement Data

Unique ID

Timestamp

Value

Quality

10

Simple Optimizable Structure

 Measurement data is well structured and can
be safely condensed into a simple data
structure (per signal):
— 16-bit ID (established at connection)
— Time (condensed where possible)
— Value (32-bit real number)
— Flags

* A highly effective lossless data compression
is optionally enabled for the time-series data:

— Implements an Xor based back-tracking
compression algorithm to remove repeating bytes

11

Buffer Block

 Buffer block measurements define a
block of data, rather than a simple
measurement value

« GEP can transmit buffer blocks to
transfer serialized data in chunks

» SIEGate uses buffer blocks for file-
based transfers through GEP

12

Options for Connecting with GEP

* To get data “into” an application you can
use GEP using a variety of API options:

— C++

— Java
—.NET

— Mono.NET
— Unity 3D

13

GEP Security Modes

Transport Layer Security Mode

— TCP command channel is secured using TLS — certificates
exchanged out of band

— Optional UDP data channel is secured using rotating keys
exchanged over TLS command channel

— Measurement access restricted on a per subscriber basis

Gateway-to-Gateway Security Mode

— TCP command channel is secured using symmetric AES
encryption — keys exchanged out of band

— Optional UDP data channel is secured using rotating keys
exchanged over encrypted command channel

— Measurement access restricted on a per subscriber basis
Internal Access Mode (No Encryption)

— Data transferred openly (ideal for internal connections or
VPN transfers when connection is already encrypted)

— Measurement access is unrestricted

© 2013 Grid Protection Alliance.

14

1.

2,

3.

4,

Steps to Exchange Data

Subscriber creates an authorization request

— Generates an SRQ file

— Send the SRQ file out-of-band (email, thumb drive, CD, etc.)
Publisher imports SRQ file

— Authorizes subscriber to connect, but still cannot subscribe

Publisher authorizes subscriber to subscribe to
measurements

— Publisher can control which measurements that subscriber can
see

Subscriber subscribes to measurements

— Subscriber can control which measurements that subscriber needs

to see

© 2013 Grid Protection Alliance.

15

Subscriber Creates an
uthorization Request

© 2013 Grid Protection Alliance.

SIEGate Manaager

57 Favorites
| Archive
4 Libraries L Certs
| ConfigurstionCache
{8 Computer | Database Scripts
| Statistics
» € Network 1 86

6/25/2012 1:11 PM
8/9/201310:58 AM
8/9/2013 2:40 PM

6/25/2013 1:10 PM
6/25/2013 1:11 PM
6/20,/2013 3:53 PM

File folder
File folder
File folder
File folder
File folder
File folder

File name: GPAsrg

Save as type: | Subscription Requests (*sig)

(= Hide Folders

16

Publisher Imports SRQ File

a

You \

& SIEGate Manager

Home Publication Subscription Inputs (

Manage Authorized Subscribers

r‘npurtEFLQ,. | | Import CER... ‘

17

Publisher Authorizes Subscriber to
Subscribe to Measurements

You

Available Measurements
Selected: 1 | Search H Advanced... ‘
ID Point Tag
] DEVARCH TVA_TESTDEVICE-DELL:AEBIH Test Devic
@ DEVARCH TVA_TESTDEVICE:ABBF Test Devic
: _TESTDEVICEABED1 Test Devic
= ; Authorized
J @ DEVARCH TVA_TESTDEVICE:ABEDF Test Devic
'J @ DEVARCH TVA_TESTDEVICE-CORD:ABBIH Test Devic
@ DEVARCH TVA_TESTDEVICE-CORD:ABBEI Test Devic
O DEVARCH TVA_TESTDEVICE-BUS1:ABEV Test Devic
@ DEVARCH TVA_TESTDEVICE-DELL:ABBI Test Devic
- DEVARCH TVA_TESTDEVICE-LAGO:ABEI Test Devic
9 DEVARCH TWVA_TESTDEVICE-BUSL:ABEVH Test Devic
] DEVARCH TVA_TESTDEVICE:ABES Test Devic
@ DEVARCH TVA_TESTDEVICE-BUSZ:ABEVH Test Devic

Pl [1]] 13
1 of 2 |T TJ

© 2013 Grid Protection Alliance. ‘| 8

Subscriber Subscribes to
Measurements

PP liltake the W =

Shelby

frequency,
medium-rare.

L

19

DataPublisher APl Usage

N

e Attach to publisher events
Purpose: e Initialize publisher
e Start publisher

S E N D e Queue new measurements for
processing

/

20

Example DataPublisher APl Code

—Inamespace DataPublisherTest

1

- class Program

1

static DataPublisher publisher = new DataPublisher();
static Ticks lastDisplayTime;
static cbject displaylock = new cbject();

- static void Main(string[] args)
1
// Attach to publisher events
publisher.StatusMessage += publisher StatusMessage;
publisher.ProcessException += publisher ProcessException;
publisher.ClientConnected += publisher ClientConnected;

f// Initialize publisher
publisher.Name = “dataPublisher";
publisher.UseBaseTimeOffsets = true;
publisher.Initialize();

// Start publisher
publisher.Start();

ThreadPool.QueuelserWorkItem{ProcessMeasurements);

© 2013 Grid Protection Alliance.

DataSubscriber APl Usage

e Attach to subscriber events
e Set up subscription info objects

Purpose; e |nitialize subscriber
Receive e Start subscriber connection

cycle
e Handle new measurement data

/

© 2013 Grid Protection Alliance. 2 2

Example DataSubscriber APl Code

static woid Main(string[] args)

1

if (args.Length < 2)

1
Conscle.Error.WriteLine("Error: requires two command line arguments™};
Conscle.Error.WriteLine(" 1. hostname of publisher™});
Conscle.Error.WriteLine(" 2. port used to initiate connection™);
return;

b

/! Set up subscription info object

unsynchronizedInfo.FilterExpression = "FILTER ActiveMeasurements WHERE 5ignalID LIKE '%'";

// Attach to subscriber events

subscriber.5tatusMessage += subscriber_StatusMessage;
subscriber.ProcessException += subscriber_ProcessException;
subscriber.ConnectionEstablished += subscriber_ConnectionEstablished;
subscriber.ConnectionTerminated += subscriber_ConnectionTerminated;
subscriber.NewMeasurements += subscriber NewMeasurements;

// Initialize subscriber

subscriber.OperationalModes |= OperationalModes.UseCommonSerializationFormat |
OperationalModes.CompressMetadata |
OperationalModes.CompresssignalIndexCache |
OperationalModes.CompressPayloadData;

subscriber.Connection5tring = string.Format("server={8}:{1}", args[®], args[1]);

subscriber.Initialize();

// Start subscriber connection cycle
subscriber.5tart();

© 2013 Grid Protection Alliance. 2 3

Live Demos

Subscribing from a .NET C# application

Subscribing from a C++ application (Linux)

Subscribing from a Java application

Subscribing from the Unity platform

24

