

2

Version 1.0 - Major Deployments

• TVA
• Entergy
• PG&E
• Dominion
• Every openPDC installation (via stats

and/or active phasor archive)

3

Version 1.0 - Current State

• Stable, mature product optimized to store time-series data
• Millisecond time-resolution
• 32-bit floating point values (with quality)
• Consumption limit around 100 PMUs

(200,000 points per second per instance)
• 3x real-time replay speed
• Supports master/slave metadata modes
• GPA has deployed the historian with the openPDC -- no

standalone installation
• File format identical to TVA DatAWare

in use since mid-90s at TVA generation facilities

4

Version 1.0 File Format

File sizes are typically about 1.5 GB.

Data blocks (8K typical) unique to a point
ID and starting time. Data is 10 byte series
of (time offset (msec), quality flags, 32 bit
floating point value). Values in a data
block are assumed to be written in
monotonically increasing time offsets.
Block Definition contains the pointID (Int32)
and start time (milliseconds since 01/01/95).
File Info holds file stop and end time as well
as block count.

5

System Components

SERVER

ARCHIVER

openHistorian 1.0
TVA DatAWare

Web Services

Socket
API

Trending
Tool

Extraction
Tool

Mimic
App

DatAWare
Client

Excel
Plug-In

Protocol
Parsers

Configuration

Version 1.0

Socket-based Applications

File
API

6

TVA Method to Distribute Data

• A prepositioned messaging service approach
 A DLL is created and compiled into both the openHistorian and

all applications that consume this message.
• Message delivery is via socket connection using

serialized data
• Data is pushed to the application (other methods used

for request/reply, e.g., web services and the legacy
socket API)

• Server side configuration of points and message
structure to be distributed via encapsulated DLL with
associated XML configuration file

Version 1.0

8

Case Study – Phasor Data
One of “Big Data” Sources from the Grid

September 2014

Grid data expected to
grow rapidly in

complexity and scale.

9

WISP Project Lessons Learned

• Availability and accuracy of the data
• Data mining tools for information

extraction
• Difficulty in deploying a common

naming convention
• Upgrading first releases of vendor

products to CIP security standards
• Applications unproven (finding and

working out the bugs)
• Integrating old PMUs and PDCs
• Applications stressed by large data

volumes

10

A new data layer must support:

• High performance processing of time-series data
 For both data archiving and retrieval modes
 High frame rate application refresh / Quick app response time
 Fast extraction of large data block – e.g., a day’s data

• An expanded set data types (e.g., doubles, strings, complex
values, etc.) while maintaining low storage requirements

• GPS precision time stamping
• Ability to insert data out of sequence
• Lossless data compression
• Improved Interfaces

 High-speed socket-based API for data access
 GEP based pub/sub real-time data subscription

11

Source: Infochimps, May 2012

Big Data Problem – One Size Doesn’t Fill All

12

The Solution – GPA’s SNAPdb Library

• Serialized
• NoSQL
• ACID Compliant
• Performant

• Housed within GPA’s
Grid Solutions Framework

13

What is ACID?

 SNAPdb Implements ACID to protect data
integrity.
 Atomicity - requires that database modifications must

follow an "all or nothing" rule. Each transaction is said to
be atomic

 Consistency - ensures that any transaction the
database performs will take it from one consistent state to
another

 Isolation - refers to the requirement that no
transaction should be able to interfere with another
transaction at all

 Durability - that once a transaction has been
committed, it will remain so

14

openHistorian 2.0 Components

API allows adapters to be developed for data inputs

Recent data served with very low latency from memory

High performance data storage with lossless data compression

Tools provided for historical data extraction

Both publish / subscribe and web services interfaces

Planned companion tools allow users to view and export data

Configuration is integrated across openHistorian processes and can itself be
integrated other configuration information data sources.

15

The openHistorian Leverages the GSF

16

System Components

MongoDB API
Mirror

GEP
Pub/Sub

Protocol
Parsers

Configuration
Administrator's

ConsoleopenHistorian
Process Mimic

openHistorian
Information

Insight

openHistorian
Information Insight

Excel Plug-In g
openHistorian

Manager
Enterprise User Client Administrator’s Client

Custom Output
Adapters

.d2 File
Reader

Bulk Data
Extraction

periodically

Read
Cache

Write
Cache

Intermediate
Files

SE
R

VE
R

SN
AP

db
SD

K
Web Services

op
en

H
is

to
ria

n
A

PI

AR
C

H
IV

ER

Action Adapter

Interfaces KVP Data Store

17

SNAPdb Data Structure

• B+Tree based that supports out of sequence
insertion

• Time support to +/- 100 nanoseconds (ticks)
(with extended time precision fields available)

• Data can be of any type that can fit in 192-bits
(for example, float32, float64, complex32, complex64, int32,
int64, uint32, uint64, char and string16)

• Data stored sequentially in compressed 4K
structures

• Tested and optimized for phasor data

18

SNAPdb’s Key-Value Pair

• Key is a join of PointID and Time
• Value can be up to 192-bits*

Example format for the openHistorian:
ValueValueKeyKey

64 bits 64 bits 64 bits 64 bits 64 bits 64 bits

Point IDTicks** Ext
Prec. Time

Flags
Quality
Flags

DATA

* 192-bits is used by the openHistorian as the size of values and keys – this is not a
restriction of the SNAPdb.

**1 Tick = 100 nanoseconds
Time Flags = duplicate entry counter (for DST), leap second, etc.

The 64-bit PointID is normally not referenced at the user level. Rather a GUID is
assigned
through configuration as well as primary and alias Tags.

10 Bytes V1
48 Bytes V2

(unencoded)

19

B+Tree Overview

• Tree grows from the
bottom up

• Leaf-nodes contain
blocks of sequential data

• Nodes are doubly
linked and point to
previous and next node

• Tree indices are unsigned 32-bit integers
which require internal-nodes to support
large trees

20

SNAPdb’s B+Tree

• The leaf node of data is encoded and
decoded dynamically to optimize memory
and storage

• Implementation operates directly from disk
without requiring an in-memory data
structure

• The data encoding process is used to
implement lossless data compression

21

.d2 File Format

Version # Node Level

Node Structure

Record Count Bytes Used
1 Byte 1 Byte 2 Bytes 2 Bytes

Left Sibling
4 Bytes

• The .d2 file contains a table of contents, a B+Tree
header and nodes: a root node, internal nodes
and leaf nodes

Right Sibling Lower Key Upper Key Data Block
4 Bytes 24 Bytes 24 Bytes 4000+ Bytes

Footer Block
32 Bytes

22

The .d2 file Data Block is a B+Tree
Collection of 4K Leaf Nodes

23

.d2 File Creation Process

• Real-time – Recent data cache
• Stage 1 – Flushes real-time cache to disk

(10 second default)

• Stage 2 – Consolidates Stage 1 files
(created based on either size or time constraints)

• Stage 3 – Create final .d2 archive file
(created based on size constraints)

LO
C

A
L

RE
SO

UR
C

ES
SH

A
RE

D

Recommended size 2GB

24

System Metadata Files

• Enables the .d2 files to be independent of
master configuration systems

• Association of .d2 and .d2m files provides
meta-data versioning over time

• Associates internal openHistorian 2.0 key (a
long integer) with its configuration GUID

• Contains the value’s fundamental meta data
 Data Type
 Measurement Units
 Preferred Tag
 Short Description

25

GSF Input Adapters / Protocol Parsers

• GSF input protocol parsers are all included with
the openHistorian as part of the SNAPdb’s
integration with the framework

• The supported protocols include:
 DNP3
 IEEE C37.118
 IEC 61850-90-5
 CSV
 OSI-PI
 IEEE 1344
 BPA PDCstream
 SEL FastMessage
 UT F-NET
 COMTRADE

26

Summary – Version 2.0 Improvements

• Fast
 In-memory cache for very high speed extraction of near-real time data
 Low data insertion lag time
 High-speed API for historical data extraction

• Reliable
 ACID-based system design objectives

-- with emphasis on “durability”
 File structure resistant to data corruption

• Expanded Use Capability
 Out-of-time-sequence inserts allowed
 Transaction-like data updates allowed
 Loss-less data compression
 More data types
 Better interfaces

27

Version 2.0 - Current State

• Early Beta version released
(and in pre-production use at OG&E, TVA and by UT’s
CURENT center)

• Testing, Bug Fixes and Benchmarking in
progress

• Source code available from codeplex:

http://openhistorian.codeplex.com

28

openHistorian API

• Archive and read support for data – historical and
real-time with low latency – for point selection over
time-range

• Updates and deletes could be implemented – but
are purposely not enabled for the historian use
case

• Multiple data types
• Socket or local files implementations
• Interval based data retrieval options – enables

high-speed data zooming
• Server-side data filtering

29

Data Read API

// Example:
var enumerator = GetHistorianData("127.0.0.1", "PPA",
DateTime.UtcNow.AddMinutes(‐1.0D), DateTime.UtcNow)

// API:
IEnumerable<HistorianMeasurement> GetHistorianData(

string historianServer,
string instanceName,
DateTime startTime,
DateTime stopTime,
string measurementIDs = null)

30

Data Write API

// Example:
WriteHistorianData("127.0.0.1", "PPA", measurements)

// API:
void WriteHistorianData(

string historianServer,
string instanceName,
IEnumerable<HistorianMeasurement> measurements)

31

Also – SQL Server Adapter

• Can query trending data from within SQL
Server using SQL CLR adapter:

