Prepared By Theo Laughner (TVA), PE Acknowledgements – Fred Elmendorf (GPA), Bill Howe (EPRI), Ralph McKoskey (TVA), Bruce Rogers (TVA)

TVA AUTOMATED FAULT LOCATION

Outline

About TVA

- Motivation for Automating Fault Location
- Industry Fault Location Projects
- EPRI Fault Location Projects
- Ourrent State of Fault Location at TVA
- Future State of Fault Location at TVA

About TVA

Motivation for AutomatingFault Location• Higher Customer Satisfaction

Improved Reliability

Reduced Time to Repair Failure

 Dispatching field resources more quickly, accurately Automated Utility
Fault Location Projects
Con Ed
Detroit Edison
San Diego Gas & Electric

Con Ed

Source: PQA / ADA 2006 – Fault Location for Underground Systems – Paul Stergiou, Da

Detroit Edison

Source: Overview of Automatic Subtransmission Fault Location System at DTE Energy – Andrew Dettloff, Dan Sabin

SDG & E

Mechanics

Source: Integrated Monitoring Distribution Fault Analysis with Spatial Twist - Joe Frani/Dai

PRI Fault Location: The DenFLE" initiative

- Create a common gathering place for data interface capability (Input)
- Create a common gathering place for algorithms and knowledge related to calculating fault location (Processing)
- Create a common gathering place for user interface (Output)
- Platform independent
- Multiple providers and applications

EPRI Fault Location Research Projects Capacitor Bank Failure Transformer Health Assessment

- Distribution Fault Anticipator
- Lightning

TVA Automated Fault Location Efforts

Event Date: 09/06/2009 11:17:51 PM

TVA Automated Fault Analysis Efforts

Punchline

 There is not a single fault location algorithm, there are many!

 There is not one source of data, but many!

There are many system modeling software packages!

Open Fault Location Engine (openFLE)

• Platform

Get Event Data

 Frees developers from the chore of reliably parsing and positioning event data for analysis

Perform Calculations

Can be extended with new algorithms

Open Fault Location Engine (openFLE)

Approach

Fault Detection

 Assume the first cycle represents prefault condition

 A fault is detected in any cycle where the RMS current (cycle value) exceeds pre-fault current by a factor of 5 AND exceeds 500 amps Improvement: Use line ratings as part of the basis for fault detection.

Fault Type

 For each phase, the fault test was applied

 The representative best fault cycle is selected as the one with the largest sum of all RMS currents

 The number of currents which pass the fault test determine the fault type.

Fault Location

- Calculated Fault Impedance using the Absolute Value Method (Reactance method was tested and found to be less accurate.)
- <u>3 Phase</u>
 - Select phase with "purest" sine wave
 - ZF = RMS (cycle data) |VN| / |I|
 - Distance is ratio ZF/Z1
- Line to Ground
 - ZF = RMS (cycle data) |VN| / |I|
 - Distance is ratio ZF/ZS (where ZS is loop impedance)
- Line to Line
 - <u>ZF = RMS (cycle data) |VL-L| / (|IP1 IP2|)</u>
 - Distance is ratio ZF/Z1.

System Results

			TVA		openFLE	
Record #	Fault Type	Line Distance	Calculated	Actual	Absolute	Reactance
1337	BC	12.58	7.60	7.54	5.65	5.37
1337	BC	12.58	7.60	7.54	7.50	7.18
1586	A	21.15	6.40	6.25	6.53	6.38
5041	ABC	83.45	35.60	36.36	36.62	36.69
5043	ABG	46.25	49.10	29.49	47.68	46.58
5346	ABC	23.39	5.90	5.86	5.48	5.55
7497	AB	18.63	3.90	2.34	3.29	3.31
7498	AB	18.63	3.90	2.34	7.10	6.21
7550	А	21.15	14.40	14.90	15.57	15.43
7707	AB	18.63	18.00	16.29	13.90	13.84
8403328	ABC	83.45	36.40	36.36	36.13	36.23
8747364	ABG	46.25	29.60	29.49	29.80	29.22
1022	ABC	83.45	50.70	47.09	50.79	50.78
1023	ABC	83.45	50.70	47.09	49.01	45.28
1024	ABC	83.45	50.70	47.09	46.67	44.42
1053	ABG	46.25	16.60	16.76	17.03	16.50
1056	ABC	4.67	5.00	3.61	4.76	4.78
1060	А	31.30	0.50	0.44	0.65	0.49
1085	А	31.30	25.70	30.86	23.99	23.75
1537	ABC	23.39	16.60	17.53	17.46	-16.50

Manual Vs. Actual

3 outliers where TVA calculation error is greater than 50%

openFLE vs. Actual

openFLE vs. Manual

openFLE CodePlex Template

Open Source Fault Location Engine

Subscribe	to	Project	

HOME	DOWNLOADS	DOCUMENTATION	DISCUSSIONS	ISSUE TRACKER	SOURCE CODE	PEOPLE	LICENSE
Page Info	Change History (all pag	es)			÷ 0	people followin	ng this project (follow)

Project Description

Open source application to determine the type and location of faults recorded in power quality data files.

Last edited Fri at 8:47 AM by staphen, version 2

http://openFLE.codeplex.com

Search W	iki & Documentation	C

There is no recommended release for this project.

openFLE Manager

openFLE Manag	ger	A REAL PROPERTY.		
ODE GRID PR	OTEC	TION ALLIANCE		BETA
Folders				
Drop folder Drop				
Results folder	Results			
Detection asse Detection algo Detection para	mbly orithm ometers	FaultAlgorithms.dll FaultAlgorithms.SimpleFault	tAlgorithms.SimpleFaultDe	tectionAlgorithm
Location assembly		FaultAlgorithms.dll		
		FaultAlgorithms.SimpleFaultA	Algorithms.SimpleFaultLoca	ationAlgorithm
Location parar	neters			
ault detection algorithms:		Fault location alg	jorithms:	
				Save Go

Button to facilitate testing

Project Status

- Testing was conducted on 161kV line events
- TVA provided GPA with 8 events for testing some with data from each end of the line
- GPA has finished development and testing of the core software.
- GPA Next Steps
 - Complete requirements document and submit BETA for EPRI QA testing
 - Post code and documentation on CodePlex
- Future work can be pursed to:
 - Automate the process within TVA
 - Refine and improve fault location algorithms

Conclusion

- Platform Built
 - openPQDIF API Built
 - (http://openpqdif.codeplex.com)
 - openFLE
 - (<u>http://openfle.codeplex.com</u>)
- Initial Testing Performed
 - Accurate
 - Fast
- To be completed
 - TVA System Integration