OG&E's SynchroPhasor Historian

Oklahoma Gas & Electric

Grid Protection Alliance

GRID PROTECTION ALLIANCE

"There's a way to do it better—find it."

-Thomas Edison

OG&E's SynchroPhasor Team

- **Given Chisholm**
 - Electrical Engineer
 - 5 Years at OG&E as Power Engineer
 - Self-Taught Programmer (17 years)
 - Application Development for Synchrophasor Technology
- □ Austin White
 - Electrical Engineer
 - 10 Years at OG&E as Power Engineer
 - Primary User of SynchroPhasor Technology

Not Your Typical Historian

- □ What is an historian? (My Experience)
 - It's a place where data goes to die.
 - Extracts data in real time
 - □ Takes 1 week to get 1 week worth of data
- □ Why is openHistorian different?
 - Crazy fast
 - Easy to use API
 - Services hundreds of clients

Prospective Architecture

OG&E's PhasorView

History of openHistorian 2.0

Built from the ground up taking what we learned from 5 historian products.

- □ Structure: MS SQL Table
 - Timestamp,ZoomIndex,Value1,Value2,...,Value56
 - CLUSTER on Timestamp (Crucial)
 - 1 SQL database per day (~600MB)
- □ Best way to get a subset of the data.
 - Experimented with Database Index on ZoomIndex
 FAILED Slow Reads. Slow Writes.
 - Duplicated down sampled data in new table.
 - Full Resolution Table, 1 Per Second Table,

1 Per Minute Table, 1 per Hour Table.

- □ Structure: MS SQL Table
 - Timestamp, Terminal ID, Zoom Index, Values[8]
 - CLUSTER on Timestamp, Terminal ID
 - 1 SQL database per Month (~700GB)
- □ Cost for flexibility 50%
- □ Started storing relay digitals
- Continued down sampled method
- □ Limited to single threaded queries

- □ Structure: MS SQL Table
 - Timestamp, Zoom Index, Data[8000]
 - CLUSTER on Timestamp
 - 1 SQL database per Month (~250GB)
- □ Implemented high speed *lossless* compression
- □ SQL is slow / SqlDataReader is slow
- SQL won't let data split pages (only 2-3KB BLOBs fit in one 8KB page)

"Lossless data compression is a class of data compression algorithms that allows the exact original data to be reconstructed from the compressed data." -Wikipedia

Lessons Learned: GPA openHistorian 1.0

- □ Structure: File
 - 8KB Block (1 Point): Timestamp, Quality, Value
 - Block Map at end of file
- □ What We Fixed
 - Expensive Initializing
 - Very High Write Amplification
 - Limited Data Type Support
 - Limited Time Resolution (milliseconds)

Write Speeds

	Write	2 Trillion
Product	(Points/Sec)	Points
OG&E Historian 1.0	5,000	13 Years
OG&E Historian 2.0	300,000	77 Days
OG&E Historian 3.0	1,000,000	23 Days
openHistorian 1.0	70,000	330 Days
openHistorian 2.0	1,000,000 (?)	23 Days (?)

□ Writing: Alpha build tests to be ~340,000. Experimental optimizations ~3 million sequential and ~1.4 million random.

Read Speed

	Read	Queries Per	Max Clients
Product	(Points/Sec)	Second	Per Server
OG&E Historian 1.0	2,000,000	8.3	33
OG&E Historian 2.0	1,700,000	7.1	28
OG&E Historian 3.0	10,000,000	41.6	166
openHistorian 1.0	1,000,000	4.2	16
openHistorian 2.0	20,000,000 (?)	83.3 (?)	333 (?)

- □ Assuming: 8 Quantities from 10 PMUs. 3000 samples per Quantity
- □ Assuming: Quad Core Server. Linear Scaling with CPU
- □ Reading: Alpha built tests to be ~27 million. Experimental ~47 million.

Database Size

Product	Size	2 Trillion
TOUUCE	(Dytes/Point)	TOIL
OG&E Historian 1.0	4.4	8.8 TB
OG&E Historian 2.0	6.6	13.2 TB
OG&E Historian 3.0	2.7	5.4 TB
openHistorian 1.0	10	20 TB
openHistorian 2.0	3 (?)	6 TB (?)

□ Compression: Been able to get down to 1.8 bytes as a minimum.

openHistorian 2.0: The What

- □ Data is sorted
- □ Isolate reads from writes
- Resistant to data corruption
- □ Transaction like editing
- Out of order inserting
- Low Insertion Lag Time
- □ ACID Support

What is ACID?

- Implementing ACID primarily to protect data integrity.
 - Atomicity requires that database modifications must follow an "all or nothing" rule. Each transaction is said to be atomic
 - Consistency ensures that any transaction the database performs will take it from one consistent state to another
 - Isolation refers to the requirement that no transaction should be able to interfere with another transaction at all
 - Durability that once a transaction has been committed, it will remain so

openHistorian 2.0: The How

- □ Wrote a custom virtual file system
 - Supports transactions
 - Read/write isolations through snapshots

openHistorian 2.0: The How

- $\square Wrote a B+ Tree structure$
 - Sorted Data
 - Out of order insertion

openHistorian 2.0: The How

- □ Wrote a server management component
 - Instant snapshot of entire database
 - Large memory buffer (up to 128GB RAM)
 - Speed
- In Memory Archive File
 - Insert Lag Times <50ms</p>
 - Commit to disk configurable

What you configure

- □ Archive File Writer
 - InMemory, Name=Gen0, NewFile=10MB
- □ Archive File Manager
 - Gen0 >> Gen1), NewFile=100MB
 - Gen1 >> Gen2), NewFile=10GB
 - Gen2 >> Gen3), NewFile=100GB
- Archive File Retirement
 - Source=Gen3, MaxSize=1TB, Length=1Year

In-Memory Historian

- □ Archive File Writer
 - InMemory, Name=Gen0, NewFile=1MB
- □ Archive File Manager
 - InMemory, (Gen0 >> Gen1), NewFile=10MB
 - InMemory, (Gen1 >> Gen2), NewFile=100MB
- Archive File Retirement
 - Source=Gen2, MaxSize=300MB

openHistorian 2.0: The When

- □ Source (API Level now)
 - DLL API only
- □ Alpha Release (3Q 2012)
 - Packaged Install, GUI Tools
- □ Beta Release (4Q 2012)
 - Compression Added, Stable
- □ Release (1Q 2013)
 - Bug Free!

- Thanks! Feel free to contact us if you have any questions.
 - Steven Chisholm
 - □ <u>chishose@oge.com</u> (405-553-3764)
 - Austin White
 - □ <u>whitead@oge.com</u> (405-553-5996)

□What are your API requirements?

